Доказано: В электросетях существуют высшие гармоники с частотами свыше 2 кГц

Российский стандарт 13109—97 при оценке качества напряжения разрешает учитывать только целочисленные гармоники до 40-го порядка по отношению к основной частоте 50 Гц, то есть до 2 кГц. Это положение стандарта представляется ошибочным.

 

В работе [1] на рис. 3 приводился пример осциллограммы напряжений в сети 10 кВ с вентильным электроприводом прокатного стана. Частота измерений здесь была равна 10 кГц, когда при разложении в ряд Фурье можно выделить предельную 100-ю гармонику частоты 5 кГц. Наблюдались гармоники кратности 60?80 с амплитудой до 15 %, тогда как коэффициент несинусоидальности напряжения, рассчитанный по ГОСТ, равен

Коэффициент несинусоидальности в этой сети, рассчитанный с учетом всех гармоник, равен

,

а долевой вклад высших гармоник кратности >40, составил

(здесь и далее приводятся усредненные по трем фазам значения коэффициентов).

В отклике на статью специалиста ОАО ВНИПИ «Тяжпромэлектропроект» А. К. Красовского приводятся сведения об опасных гармонических возмущениях на еще больших частотах 7.9?8.1 кГц (158?162-я гармоники).

 

Заметим, что возмущения на частотах 9 кГц — 30 МГц традиционно изучаются специалистами по связи, причем CISPR (Интернациональный Комитет по Радиопомехам), накладывает соответствующие нормативные ограничения на напряжения и токи больших частот. Полагается, что диапазон 2?9 кГц должен контролироваться специалистами электрических систем, но это не произошло вследствие, очевидно, относительно малого количества наблюдавшихся экстремальных ситуаций, требующих решения, и явной неподготовленностью парка измерительных приборов.

 

Приведем ряд дополнительных примеров, показывающих на проблемы в работе электрооборудования из-за наличия гармоник с порядковым номером n>40.

На рис. 1 показаны мгновенные значения и гармонические спектры фазных напряжений в одной из сетей 6 кВ, питающей 12-пульсные выпрямители преобразователей частоты мощностью 4 МВт. Высокочастотные колебания напряжения приводят к сбоям в работе находящихся в сети электронных приборов (компьютеров, цифровых реле и электросчетчиков), создают телефонные помехи.

 

Рис. 1. Фазные напряжения в сети с нагрузкой преобразователей частоты и их спектры

 

Спектр напряжений, рассчитанный до частоты 10 кГц (fизм=20 кГц), явно имеет гармоники с частотой более 200-й кратности. Если бы приводились измерения прибором, ориентированным на учет гармоник до 40-й, то пользователь зафиксировал бы коэффициент искажения синусоидальности напряжения KU ГОСТ=4.6 % (близкое к норме ГОСТ значение) с небольшим превышением допустимых уровней для 35 и 37-й гармоник. Но действующее значение коэффициента искажения синусоидальности в действительности составляет

,

а доля гармоник порядков n>40 превышает допустимое по ГОСТ значение для низкочастотного диапазона n=2?40 (KU n>40=10.2 %).

Главной причиной появления столь высокочастотных гармоник (рис 1), подтвержденных математическим моделированием процессов в данной сети, является относительно малая величина емкостной проводимости изоляции в сочетании с наличием высокочастотных возмущений от управляемых тиристорных преобразователей — см. рис.2. При относительно малой в данном случае нагрузке преобразователей (около 25 %) наблюдаются близкие к нулю углы коммутации и большие di/dt. Двенадцать раз на периоде возникают резкие срезы обратных токов тиристоров, в результате чего спектр гармонических возмущений по току не затухает и на 200-й гармонике. Недопустимые гармонические возмущения наблюдались и при нагрузке, приближающейся к номинальной, несмотря на увеличение углов коммутации.

Рис. 2. Токи нагрузки, приводящие к показанным на рис. 1 возмущениям напряжения.

 

На рис. 3 показаны спектры напряжения в сети 6 кВ завода, где работают выполненные с 12-пульсными выпрямителями электропечи высокочастотного нагрева мощностью 5 МВА фирмы АВВ. При изменениях нагрузки печи за счет переключения ступеней регулирования (их всего 14) наблюдаются существенные изменения гармонических спектров токов и напряжений. При относительно невысоких величинах показателя KU ГОСТ имеем недопустимо большие коэффициенты KU и KU n>40, особенно при работе на ступенях с малой нагрузкой. Выполнить такой подробный анализ гармоник оказалось возможным с использованием осциллографа-анализатора "НЕВА-ИПЭ" [1].


Рис. 3. Зависимость спектров напряжений в сети 6 кВ от режима работы электропечи с частотным преобразователем.

 

На основании изложенного можно высказать следующие пожелания.

1. ГОСТ 13109—97 должен быть дополнен разделом, посвященным нормированию гармоник в диапазоне 2?9 кГц. К этой ответственной работе следует приступить как можно скорее.

2. Разработчикам приборов ПКЭ необходимо расширить диапазон измеряемых гармоник.

3. Следует рекомендовать исследователям при возникновении подозрений на существование недопустимых высокочастотных помех использовать для измерений различного рода осциллографы и специализированные алгоритмы обработки измеренных сигналов.

4. Необходимо активизировать исследовательские работы по поиску рациональных путей подавления высокочастотных помех. Над решением этой достаточно сложной задачи работают, в частности, специалисты ЗАО «НПФ «ЭНЕРГОСОЮЗ».

 

Литература

1. Л.А.Кучумов, А.А.Кузнецов, М.В.Сапунов. Исследователи ждут большего от современных измерительных приборов. «Новости электротехники». СПб.: № 4, 2004.-С.64—66

 

Авторы:

Л.А.Кучумов, проф. СПбГПУ;
А.А.Кузнецов, доцент СПбГПУ;
М.В.Сапунов, инженер ЗАО «НПФ «ЭНЕРГОСОЮЗ».